
Försättsblad till skriftlig
tentamen vid Linköpings Universitet

Datum för tentamen 2010-08-27
Sal

TER1

Tid

14-18

Kurskod

TDDC90

Provkod

TEN1

Kursnamn/benämning

Programvarusäkerhet

Institution IDA
Antal uppgifter som
ingår i tentamen

10

Antal sidor på tentamen (inkl.
försättsbladet)

6

Jour/Kursansvarig Shanai Ardi/Anna Vapen
Telefon under skrivtid 282608/288986
Besöker salen ca kl. 15, 17
Kursadministratör
(namn + tfnnr + mailadress)

Madeleine Häger
282360, madha@ida.liu.se

Tillåtna hjälpmedel

Inga

Övrigt
(exempel när resultat kan ses
på webben, betygsgränser,
visning, övriga salar tentan
går i m.m.)

LiTH, Linköpings tekniska högskola
IDA, Institutionen för datavetenskap
Nahid Shahmehri

Written exam

TDDC90 Software Security

2010-08-27

Permissible aids
Dictionary (printed, NOT electronic)

Teacher on duty
Shanai Ardi/Anna Vapen

Instructions
The exam is divided into two parts with a total of ten questions. You should answer
all questions in all parts. In order to get the highest grade you will need sufficient
points in the second part.

You may answer in Swedish or English.

Grading
Your grade will depend on the total points you score on the exam. The following
grading scale is preliminary and might be adjusted during grading.

Grade 3 4 5

Points required 18 24 30

Important

In order to get the highest grade you must have scored at least six points in part 2.

Part one

Question 1: Secure coding (2 points)

Assuming that integers x and y have been read from an untrusted user, give two
reasons that the following code is dangerous:
char *p = malloc(x * y);
while (x > 0)
 while (y > 0)
 *p++ = 0;

Question 2: Vulnerabilities (2 points)

Briefly explain one compiler-based method for preventing exploitation stack-based
overflows.

Question 3: Fuzz testing (2 points)

Explain what fuzz testing is, and describe the kinds of vulnerabilities it is good for
detecting.

Question 4: SDL (2 points)

Name and briefly explain two activities in SDL that take place in the design phase

Question 5: Vulnerabilities (4 points)

Explain what a format string vulnerability is and what kind of impact(s) such
vulnerabilities can have. Give an example of a vulnerable line of code, and explain
how it could be exploited by an attacker.

Question 6: Threat modeling (4 points)

Explain what attack trees are and how they can be used in security. Draw an attack
tree for breaking into your own apartment or dorm room. You will be judged, in part,
on how complete your attack tree is.

Question 7: Static analysis (4 points)

To get precise results in static analysis, points-to analysis must be performed. Explain
what points-to analysis is and why it is important for static analysis. Give an example
in code or detailed pseudocode that illustrates a situation where points-to analysis is
required. Explain your example.

Question 8: Secure design patterns (4 points)

Explain the privilege separation design pattern in detail, including the security
benefits of using this pattern.

Part two

In order to score well on these questions you will need to show that you understand
not only the technical issue or concept at hand, but also its context and its interactions
with its context (e.g. processes, methods, techniques, technology, people, risks,
threats, and so on). We think that good answers to these questions will require at least
one or two handwritten pages (more or less may be required depending on how you
write).

Question 9: Common Criteria (6 points)

Explain what the Common Criteria is, and what its purpose is. Name and briefly
explain all the main components and concepts of the Common Criteria.

Question 10: Vulnerabilities and detection (6 points)

The function shown on the next page of this exam is a simple request handler for a
web application server. The request handler is called by the application server for
specific requests. You don’t need to be concerned about how this works.

This particular request handler is for file uploads. The request contains two important
parts: a path and data. Both can be accessed via a request object, which the request
handler gets from the application server.

The path indicates where to store the uploaded file. To prevent malicious users from
overwriting arbitrary files on the computer, the request handler prepends a document
root to the requested path. For example, if the request specified path /etc/passwd,
and the document root is /uploads, then the request handler will store the uploaded
data in the file /uploads/etc/passwd.

The data is the data to upload. It is assumed to be text encoded using ISO-8859-1,
which means that there is one byte per character, of which all eight bits are
significant. The request handler reads all the data into memory, converting one
character at a time to UCS-4, which uses exactly 32 bits per character. The converted
data is then written to the output file.

The request handler requires the session to be authenticated.

There are at least two vulnerabilities in the code.

For each vulnerability:

- Indicate the code that contains the vulnerability.

- Explain the input that could trigger the vulnerability (you do not need to
explain how to exploit it).

Continues on next page

- Propose corrections to the code that would eliminate the vulnerability.

- Name and explain any mitigation techniques in the compiler, libraries or
operating system that could prevent the vulnerabilities from being exploited.

There are some extra notes on the various functions used in the code on the last page
of this exam.

Code for question 10

int request_handler(struct http_request *sess) {
 char anonymous;
 char path[MAXPATHLEN];
 int size;
 char c, rootd;
 FILE *in, *out;
 uint32_t *buf, *tmp;

 anonymous = is_anonymous(sess);

 /* Check if the request is valid */
 if (sess->request == NULL)
 return INVALID_REQUEST;

 /* Place the document root into path */
 strcpy(path, document_root);

 /* Set rootd to 1 if path is "/" */
 rootd = (path[0] == '/' && path[1] == '\0');

 /* Check that root, request, null and possible extra "/" fits in path */
 if (strlen(path) + strlen(sess->request) + rootd + 1 > MAXPATHLEN)
 return INVALID_REQUEST;

 /* Now we know there is enough space in path . perform the append */
 if (rootd == 0)
 strcat(path, "/"); /* Add a / if path is not "/" */
 strcat(path, sess->request); /* Append the request path */

 /* Read, encode, and copy the input if the user is authorized */
 if (!anonymous) {
 size = atoi(http_get_header(sess, "content-length"));
 buf = malloc(size * 4); /* Space for UCS-4 encoding */
 tmp = buf; /* Save a copy of the pointer */

 in = http_get_input_stream(sess);
 while (size--) { /* Read at most size bytes */
 c = fgetc(in); /* Get one character */
 if (c == -1) /* End of file */
 break; /* Terminate reading */
 tmp = latin1_to_ucs4(c); / Convert character */
 tmp += 1; /* Advance to next position */
 }
 fclose(in); /* Close the input */

 size = atoi(http_get_header(sess, "content-length"));
 out = fopen(path, "w"); /* Open the output file */
 fwrite(buf, 4, size, out); /* Write the entire buffer contents */
 fclose(out); /* Close the output file */
 free(buf); /* Free allocated memory */
 return OK;
 }
 else
 return UNAUTHORIZED;
}

Continues on next page

Notes on the code for those not very familiar with C
The code above uses some API functions and variables from the application server:

is_anonymous returns 1 if the request is anonymous (i.e. not authenticated).

http_get_header returns the content of the specified HTTP header.

http_get_input_stream returns a file pointer from which the handler can read the request
data. The file pointer returned by this function should be closed using fclose.

latin1_to_ucs4 converts a single character from ISO-8859-1 encoding to UCS-4
encoding (i.e. from one to four bytes).

document_root is a string guaranteed to be a valid path on the filesystem, and guaranteed
to be no more than MAXPATHLEN characters long.

INVALID_REQUEST, UNAUTHORIZED, and OK are constants that this function
may return.

struct http_request represents an HTTP request. The request field contains the path the
client has requested.

The code also uses the following standard C library functions:

malloc allocates memory on the heap. The parameter to malloc specifies how much
memory can be allocated. Memory allocated with malloc is returned to the heap using the
free function. When malloc fails to allocate sufficient memory, it returns NULL.

free frees allocated memory. It must never be called twice on the same pointer.

The fgetc function reads a single character from a file pointer. It returns an integer
representing the character, or -1 if there are no more characters to read.

strcpy copies data to a destination from a source. It operates on null-terminated strings
(i.e. standard C strings). For example, to copy a string from a to b, call strcpy(b,a). Both a
and b must be pointers to strings or be character arrays. If b contains the string “test”,
then the function will copy five bytes: the four characters and the null terminator.

strcat concatenates two strings. Like strcpy it operates on standard C strings. For
example, to place the contents of a at the end of b, call strcat(b,a). The resulting string
will also be null terminated.

strlen calculates the number of characters in a string. It does not count the null
terminator.

atoi converts a string to an integer. If the string does not represent a valid integer, then its
behavior is undefined (it will probably return 0).

fwrite writes output to a file pointer. The call fwrite(buf,size,nitems,fp) writes nitems
items of size size from the memory that buf points to, to the file pointer fp.

fclose closes an open file pointer.

uint32_t is an integer datatype that occupies exactly 32 bits. char is an integer datatype
that represents an ASCII character; it occupies one byte (eight bits). FILE* is a file
pointer, from which functions such as fgetc can read input.

MAXPATHLEN is the maximum length of a valid path name.

C handles arithmetic on pointers differently from arithmetic on integers. If p is a pointer
to a datatype that occupies n bytes, then the statement p += 1 will advance p to the next
element – i.e. increment it by n. In this example, pointer arithmetic is used to advance the
tmp pointer one element at a time from the start of buf up to the last element.

	Försättsblad till skriftlig tentamen vid Linköpings Universitet
	Written exam
	TDDC90 Software Security
	2010-08-27
	Part one
	Question 1: Secure coding (2 points)
	Question 2: Vulnerabilities (2 points)
	Question 3: Fuzz testing (2 points)
	Question 4: SDL (2 points)
	Question 5: Vulnerabilities (4 points)
	Question 6: Threat modeling (4 points)
	Question 7: Static analysis (4 points)
	Question 8: Secure design patterns (4 points)

	Part two
	Question 9: Common Criteria (6 points)
	Question 10: Vulnerabilities and detection (6 points)
	Code for question 10

